Machinery Fault Simulator
Magnum

MFS-MG

The Best Tool Available for Learning
Machinery Diagnosis

SpectraQuest, Inc.
8201 Hermitage Road, Richmond, VA 23228 U.S.A.
TEL +1-804-261-3300/FAX +1-804-261-3303
www.spectraquest.com
The Most Versatile Tool to Protect Your Machinery Investment

Condition-based predictive maintenance (PdM) is a reliable, cost-effective technique for monitoring and diagnosing machinery faults before they irreversibly damage your machinery and cause breakdowns that threaten to undermine product quality, delivery and overall customer service. The success of any PdM program ultimately depends on how accurately and easily the vibration spectra, waveforms and phase relationships can be analyzed and understood. Spectra Quest’s Machinery Fault Simulator Magnum (MFS-MG) is an innovative tool to study the signatures of common machinery faults without compromising production schedule or profits. The bench-top system has a spacious modular design featuring versatility, operational simplicity, and robustness. Each component is machined to high tolerances so it can be operated without conflicting vibration. Then, various faults can be introduced either individually or jointly in a totally controlled environment, making the MFS-MG the best tool available for learning machinery diagnosis.

FEATURES:
- Rotor shaft specially designed for fluid film bearing rotor dynamics simulation.
- Different bearing clearance selection and controllable lubrication oil pressure for rotor dynamics study.
- Simple methods for introducing controlled and calibrated faults.
- Study the vibration spectra of common faults, learn fault signatures and validate rules provided in training courses.
- Bench top machine for hands-on training and skill sharpening.
- Learn machine condition monitoring and predictive maintenance.
- Manual with exercises for individually paced study.
- Modular, versatile, robust, and comprehensive.
- Simultaneous reciprocating and rotating mechanisms.
- Learn resonance, variable speed, gearbox, and belt drive diagnostics.
- Learn to determine vibration transmission path and perform root-cause analysis.
- Study correlation among vibration, motor current, and noise spectra.
- Model rotor dynamics and its effects on fault signatures.
Designed to Study Oil Whirl And Whip In Fluid Film Bearing

The MFS-MG fitted with a resonance kit is the perfect tool to gain practical experience in rotating machinery resonance and learn resonance mitigation methods. With different number of rotor disks installed at various locations on the main shaft, resonances up to the third mode can be excited. The bode plot of the main shaft vibration during a coast down test is illustrated in the right figure. Three resonances can be identified clearly. Oil whirl and whip are important instability phenomena associated with rotors supported fluid film bearings. With proper selection of the bearing load (the number of rotor disk), bearing clearance (the selection of bearing cartridge) and oil pressure (adjusting the oil supply valve), the oil whirl and whip can be simulated using the MFS-MG. The waterfall plot on the right illustrates the oil whirl and whip observed on this simulator. The first critical speed of the main shaft (1X), oil whirl and oil whip are all identified in this waterfall plot. In order to observe oil whirl and whip, the simulator must be running at more than twice of the first critical speed of the main rotor shaft.

APPLICATIONS:
- Balance training
- Shaft alignment training
- Alignment system assessment
- Coupling studies
- Journal and rolling element bearing faults and load effects
- “Cocked” rotor
- Eccentric rotor
- Resonance studies
- Sleeve bearing studies
- Belt drive performance
- Mechanical rub
- Gearbox fault studies
- Reciprocating mechanism studies
- Foundation studies
- Fluid film supported rotor dynamics studies and demonstration
- Signal processing techniques
- Variable speed/load effects
- Motor current analysis
- Rotor dynamics
- Operating deflection shape and modal analysis
- Optimize sensor mounting
- Sensor types (accelerometer, proximity probes, etc.)
- Vibration training
- Analyst certification
- Customized test bed for rotor dynamics studies and demonstrations
Machinery Fault Simulator - Magnum (MFS-MG)

The Best Tool Available for Learning Machinery Diagnosis

To gain an in-depth understanding of different vibration signatures, controlled experiments on a device that emulates real world machinery are needed. While analysis of a single machinery fault may be beneficial, there are many occasions when the analysis of the interaction between dynamic stiffness, resonance, and speed is essential in order to gain an understanding of real world vibration spectra. With the MFS-MG, the expertise required to diagnose industrial machinery problems in well controlled experiments can be developed and enhanced. With a plant running at full production, it is virtually impractical to gain an understanding of the kinetics and dynamics of machinery without adversely affecting production and profits: The MFS-MG enables offline training and experimentation which in turn will minimize production downtime.

Versatility Improves Plant Efficiency

The most comprehensive device of its kind on the market, the MFS-MG meets the needs of a broad range of vibration analysts, from novice to experienced. It is an effective tool for introducing the concepts and methodologies of predictive maintenance and design considerations to engineering students. Companies can train their maintenance professionals on the MFS-MG, offering experienced technicians a way to upgrade their job skills and improve performance. Having trained vibration analysts on staff offers companies a high degree of confidence in their operating efficiency because someone on the plant floor is immediately available to ensure that machinery continues to run productively. It enables not only to predict machinery condition to maximize yields and efficiencies, but also to support planned, efficient shut downs with just-in-time parts delivery.

Smart Design Makes the Simulator Robust and Easy to Use

The MFS-MG is designed to be both versatile and easy to operate. The simulator is constructed with a split bracket bearing housing, a sliding
shaft, rotors with split collar ends, couplings, pulleys, a multiple belt tensioning and gearbox mounting mechanism, and reciprocating system; all of which are designed to be easily removed and replaced between various experiments.

Basic MFS-MG Configuration and Option Kits
The MFS-MG provides a basic setup for performing experiments and learning vibration signatures of different machine malfunctions. However, a detailed investigation of particular and more advance vibration phenomena or machinery fault will require additional attachments and fixtures which are available through optional kits.

Training Curriculum Manual (SQI-TRCM)
- The training curriculum manual begins with textbook and basic classroom training in the fundamentals of classic machinery vibration, transducers, monitoring, signal processing, analysis, etc; from beginner to upper intermediate levels. It is both hands-on and mathematically oriented, being appropriate for both technicians and engineers.
- A wide array of laboratory exercises to be conducted on the MFS to provide a truly experiential learning environment.
- Use as a basis for accelerated course preparation and the development of vibration training program.

Eccentric Rotor (M-ER-3/4)
- Learn the effects of rotor eccentricity on vibration spectra.
- Determine relationships between eccentricity and unbalance.
- Develop techniques to locate and correct the effects of eccentricity.
- Learn the effect of varying the mass moment of inertia on vibration amplitude.
- The kit consists of one aluminum rotor with an asymmetrically located center and one clamp collar.

Cocked Rotor (M-CR-3/4)
- Learn the effects of a sheave that has not been fitted to the shaft properly.
- Learn vibration signature of a cocked rotor.
- Develop methods to correct cocked rotor problems.
- Learn the effect of varying the mass moment of inertia on vibration amplitude.
- The kit consists of a cocked aluminum rotor (0.5 degree off-axis) and one clamp collar.
Higher Resonance Study Kit (M-RDK-1/2)
- Study higher resonance modes by adding disks to ½” shaft.
- **The kit consists of three steel disks**
- Requires MG-RSK-1/2

Rolling Bearing Resonance/Critical Study Kit (MG-RSK-1/2)
- Study resonance and critical speed phenomena, at speeds below 2000 RPM to simulate real world operating conditions while improving safety. The standard ¾” shaft has a high resonance frequency, 7000 RPM or more depending on rotor positions.
- Study damaging effects of resonance and develop control methods.
- Relocate rotors and supports to study the effects of mass and stiffness on resonance frequencies and mode shapes.
- Study beating due to closely spaced modes.
- Study non-linear dynamics for chaos modeling.
- **The kit consists of one ½” shaft, three rotors, two rolling element bearings, and one coupling.**
Optional kits are ideal for detailed investigation of specific vibration phenomena and machinery faults

Sleeve Bearing Resonance Study Kit (M-SBK-1/2)
- Study resonance and critical speed phenomena in sleeve bearings.
- The kit consists of two customized grease-lubricated, babbitt lined sleeve bearings, two bearing pedestals, and various thickness plastic shims
- Requires MG-RSK-1/2

Oil whirl/whip in-depth study kit for 3/4" shaft (M-OWSK-3/4)
- Study the effect of stiffer rotor on oil induced instability and understand whirl/whip phenomena and how to avoid it. The idea is to understand and control the whirl/whip phenomena. 3/4" shaft provides not only stiffer rotor but also lighter balance, eccentric and cocked disks for more investigation to enhance the understanding.
- The kit consists of four sleeve bearing pairs to give bearing clearances of 2 and 6 mils (0.001") for two different lengths, two elliptical bearings to avoid whirl/whip instability, and one shaft centering device

Oil whirl/whip in-depth study kit for 1/2" shaft (M-OWSK-1/2)
- Study effects of bearing clearance, L/D ratio, and rotor loading effects on oil induced instability, and to understand whirl/whip phenomena and how to avoid it.
- The kit consists of four sleeve bearing pairs to give bearing clearances of 2 and 6 mils (0.001") for two different lengths, two elliptical bearings to avoid whirl/whip instability, and one shaft centering device insert.
- Requires MG-RSK-1/2, MG-OWSK-3/4

3/4" Shaft Sleeve Bearing Kit (M-SBK-3/4)
- Investigate waveform and spectral recognition of worn or loose fitting bearings.
- Modify the clearance of the split bearings with plastic shims.
- Perform shaft orbital analysis.
- The kit consists of two customized grease-lubricated, babbitt lined sleeve bearings, two bearing pedestals, and various thickness plastic shims
Machinery Fault Simulator - Magnum (MFS-MG)

Cocked Bearing Housing (M-CBM-3/4)
- Recognize the signature of a cocked bearing due to improper seating or due to inconsistent installation.
- The kit consists of one cocked bearing housing

1” Shaft Bearing Study Kit (MG-BSK-1)
- Study bearing fault frequencies away from multiples rotational speed. The standard ¾” shaft exhibit fault frequencies close to multiples rotational speed, requiring ultra high resolution spectra to clearly identify bearing fault frequencies.
- Identify bearing fault frequencies in the presence of defects at multiples of shaft speed without using high-resolution spectra.
- Understand the signal processing issues such as averaging, spectral resolution, and leakage phenomena.
- The kit consists of two split bearing housings, two 1” inside diameter bearings, one 1” diameter shaft, and one coupling

3/4” and 1” Bearing Loader (M-BL-3/4 and M-BL-1)
- Investigate bearing radial loading effects.
- Enhance the spectral amplitude of system.
- The kit consists of one 3/4” or 1” bore loader weighting 11lb (5kg) and two clamp collars

3/4” and 1” Bearing Fault Kit (M-BFK-3/4 and M-BFK-1)
- Learn waveform and spectra of classic bearing defects.
- Learn about signal processing issues such as averaging techniques, leakage, and spectral resolution on determining bearing faults.
- Perform experiments with increasing severity of defects.
- Determine why an ultra-high resolution spectrum is needed to diagnose a bearing fault when fault frequencies are located close to multiples rotational speed.
- Learn how a large signal can mask adjoining low amplitude signal due to spectra leakage.
- The kit consists of one inner race defect, one outer race defect, one with ball defect, and one combination of defects
Machinery Fault Simulator - Magnum (MFS-MG)

Multi-Belt Drive, Straight Tooth Gearbox, and Adjustable Particle Magnetic Brake System (M-BDGB)
- Learn sheave misalignment and belt tension effects on vibration, and belt fault frequencies.
- Learn the effects of load, backlash, and tooth faults on the amplitudes and distribution of the gearmesh and sideband frequencies.
- Develop advanced signal processing techniques such as time synchronous averaging, wavelet analysis, short time Fourier transform for gearbox fault diagnosis.
- Develop expertise to diagnose a gearbox problem under a variable loading (or speed) conditions.
- Learn the effects of the frequency and amplitude modulation on vibration spectra.
- Remove the pinion assembly for backlash adjustment, and fault introduction.
- **The kit consists of two V-belts, two double groove sheaves and one rolling tensioner; one three-way oil-lubricated gearbox with straight cut bevel gears, cup and cone roller bearings; and one manually adjustable magnetic brake.**

Defective Straight Tooth Gearbox Pinions (M-DGPA)
- Study the effect of damaged tooth in gearboxes.
- Investigate backlash between mating gears.
- **The kit consists of one missing tooth pinion and one chipped tooth pinion.**
- Requires M-BDGB

Worn Straight Tooth Gearbox (M-WGB)
- Develop practical techniques to diagnose gearbox faults, such as backlash, bearing looseness, and tooth surface polishing and imprint.
- Compare vibration spectral floor between new and worn gearboxes.
- **The kit consists of one worn gearbox**
- Requires M-BDGB

Belt-Drive Mounting Block (M-BDB)
- Learn sheave misalignment and belt tension effects on vibration, and belt fault frequencies without the gearbox imprint.
- Study belt response to variable magnetic brake loading.
- **The kit consists of one belt-drive block**
- Requires M-BDGB
Machinery Fault Simulator - Magnum (MFS-MG)

Eccentric Sheave (M-ES-3/4)
- Study the effects of eccentric sheaves.
- Distinguish between eccentricity, unbalance, belt resonance.
- The kit consists of one eccentric shear.
- Requires M-BDGB

Direct Driven Gearbox Mounting Kit (M-DGBB)
- Study gearbox vibration signatures without belt, shaft or bearing imprint.
- The kit consists of all hardware needed to mount the gearbox directly the AC motor.
- Requires M-BDGB

Reciprocating Mechanism (M-RMS)
- Monitor and diagnose reciprocation and load varying machinery.
- Study torsional vibration measurement techniques.
- Demonstrate the effectiveness of commercial analyzers at tracking speed variation and displaying the results.
- The kit consists of a reciprocating mechanism with two springs, adjustable spring engagement timing, and two stroke settings.
- Requires M-BDGB

Direct Driven Reciprocating Mechanism Mounting Kit (M-DRMB)
- Study reciprocating mechanism vibration signatures without gearbox, belt, shaft or bearing imprint.
- The kit consists of all hardware needed to mount the reciprocating mechanism directly the AC motor.
- Requires M-BDGB and M-RMS

Fan Vibration Kit (M-FVK-3/4)
- Learn the sound and vibration signatures of fans.
- Study the effects of volumetric flow rate on pressure rise and fan vibration.
- Develop the noise and vibration control methods on fans.
- The kit consists of one six-blade paddle fan, one ten-blade paddle fan, one 12-blade axial fan, and one axial fan obstruction.
Crack Shaft Study Kit (M-CSRK-3/4)
- Study the effects of crack on the natural frequencies and vibration behavior.
- Develop diagnostic technique to detect crack at early stage.
- Study crack propagation and breathing.
- Apply advanced signal processing techniques, such as wavelet, joint time-frequency analysis, time series analysis, to study the vibration caused by crack.
- The kit consists of one shaft with a 4 ½” 4-bolt flange connection to simulate crack, one shaft with slit crack and filler, and one shaft with a deep V-notch crack.

Mechanical Rub Kit (M-MRK)
- Evaluate typical rub phenomena associated with a variety of materials under different angle, loading, and lubricant conditions.
- Experiment rubs on shaft or rotor.
- The kit consists of an adjustable spring-loader rub material holder and four different rub materials

Centrifugal Pump with Clear Cover to Visualize Cavitation (M-CFPK)
- Study vibration spectra due to cavitation.
- Determine the damaging effect of the cavitation.
- Visualize cavitation using the clear pump cover.
- Study the effect of turbulence on vibration signature.
- Study the effect on pump loading on motor and other components.
- Study the effect of different head and valve restriction on suction and/or discharge sides on flow dynamics of the pump.
- Investigate the effect of speed and load variation on pump vibration spectra.
- Study the effect of clearance between the impeller and the suction portion of the pump.
- Conduct similar studies using other non-hazardous liquids of different viscosity and specific gravity.
- The kit consists of one single stage centrifugal pump, one LEXAN cover for visualizing cavitation, two pressure gauges, one flow meter, one water tank, all connecting valves and hoses, one sheave, and mounting hardware.
- Requires M-BDGB
Machinery Fault Simulator - Magnum (MFS-MG)

Centrifugal Pump With Worn Impeller (M-CFPFI):
- Recognize vibration and hydraulic issues associated with a worn pump.
- The kit consists of one worn centrifugal pump with simulated cavitation damage to the head and impeller.
- Requires M-BDGB and M-CFPK

Direct Driven Centrifugal Pump Mounting Kit (M-DCPK)
- Study centrifugal pump vibration signatures without belt, shaft or bearing imprint.
- The kit consists of all hardware needed to mount the centrifugal pump directly the AC motor.
- Requires M-CFPK

Reciprocating Compressor Kit (M-RCK)
- Learn the sound and vibration signatures of compressor housing, valves, and other structural components.
- Develop diagnosis techniques for reciprocating compressors.
- Learn the reciprocating compressor performance.
- Study the pressure pulsation and the effects of discharge pressure on the behavior of the compressor.
- The kit consists of one ½ HP compressor, one 5-gallon air tank with flow controls, all needed piping and mounting hardware.
- Requires M-BDGB

Reciprocating Compressor Fault Kit (M-RCFK)
- Learn the sound and vibration signatures of compressor with faulty valves.
- The kit consists of one ½ HP compressor with leaking valve, blocked suction filter, limited opening discharge valve, and oversized connecting rod.
- Requires M-BDGB and M-CFPK

Direct Driven Reciprocating Compressor Mounting Kit (M-DRCK)
- Study reciprocating compressor vibration signatures without belt, shaft or bearing imprint.
- The kit consists of all hardware needed to mount the reciprocating compressor directly the AC motor.
- Requires M-RCK
Damped Bearing Housing Kit (M-DBHK-1/2)

- Study bearing housing with a higher damping factor than the standard housing. Typical rolling element bearing systems are an all-metal structure with virtually no damping.
- Add damping to a standard rolling element bearing housing.
- Demonstrate the reduction in rotor resonance amplitude due to the installation of damping.
- The kit consists of two bearing housings and two ½” bearings fitted with isolators.
- Requires MG-RSK-1/2

AC Motor With Built-In Rotor Unbalance (M-UBM)

- Study the effects of unbalanced rotor on vibration and/or current signature.
- Study the effect of unbalance rotor on power quality and consumption.
- Study the effect of temperature rise on non-linear characteristics of induction motors.
- The kit consists of one unbalanced 1 HP AC motor

AC Motor With Built-In Rotor Misalignment System (M-MAM)

- Study the effect of variable air gap on vibration and/or current signature.
- Study the effect of amount/type of misalignment and rotor speed on vibration/current spectra.
- Determine the effect of misalignment on power quality and consumption.
- Study the effect of temperature rise on non-linear characteristics of induction motors.
- The kit consists of one 1 HP AC motor with custom machined end bells, which allows for easy introduction of known misalignment at either end of the motor.

AC Motor With Built-In Bowed Rotor (M-BRM)

- Study the effects of rotor bow on vibration and/or current signature.
- Study the effect of bowed rotor on power quality and consumption.
- The kit consists of one 1 HP AC motor with centrally bent rotor

AC Motor With Built-In Faulted Bearings (M-FBM)

- Study the effects of bearing faults on vibration and/or current signature.
- Study the effect of bearing faults on power quality and consumption.
- The kit consists of one 1 HP AC motor fitted with one inner race faulted bearing and one with outer race faulted bearing. User can specify the types of bearing faults.
Machinery Fault Simulator - Magnum (MFS-MG)

AC Motor With Built-In Broken Rotor Bars (M-BRBM)
- Study the effect of broken rotor bars on motor vibration and/or current signature as a function of speed and load.
- Study the effect of broken rotor bars on power quality and consumption.
- Study the effect of temperature rise on non-linear characteristics of induction motors.
- The kit consists of one 1 HP AC motor with broken rotor bars.

AC Motor With Stator Winding Faults (M-SSTM)
- Study the effects of turn-to-turn short in stator windings on vibration and/or current signature.
- Study the effect of turn-to-turn short in stator windings on power quality and consumption.
- Study the effect of temperature rise on non-linear characteristics of induction motors.
- The kit consists of one 1 HP AC motor with shorted stator winding turns, and one control box to vary short conditions.

AC Motor With Voltage Unbalance & Single Phasing (M-VUSM)
- Study the effects of voltage unbalance and one phase loss on motor current/vibration signatures.
- Study the effect of voltage unbalance and one phase loss on power quality and consumption.
- Study the effect of temperature rise on non-linear characteristics of induction motors.
- The kit consists of one 1 HP AC motor and one control box to vary voltage balance and to disconnect one phase.

PC Motor Control Kit (M-PCK)
- Operate MFS from remote location.
- Pre-program speed acceleration, deceleration, and length of run to meet exact requirements.
- The kit consists of PC software, one interface module to motor drive and cables.

Shaft Alignment Kit (M-ATK)
- Align shafts precisely with convenient and simple Windows alignment software.
- Accommodates ½” to 1 ¼” diameter shafts.
- The kit consists of two precision dial indicators, two mounting brackets/bars, one mirror, one set of feeler gauges, and instructions packaged in a rugged plastic case.
Mechanically Operated Bearing Loader (M-MBL-3/4)
- Investigate bearing radial loading effects.
- Understand bearing failure signature as a function of load and rotational speed.
- Compare vibration signature between loaded and unloaded bearings.
- Study outer race bearing fault signature as a function of load location.
- The kit consists of one bearing housing allowing for radial loading via threaded bolt.

Bearing Load Cell (M-BLC-3/4)
- Measure the radial load applied by the mechanically operated bearing loader.
- The kit consists of one transducer measuring radial force and one matching signal conditioner.
- Requires M-MBL-3/4

Vertical and Horizontal Bearing Force Transducer for 1/2" to 1" Shafts (M-FTVH)
- Measure forces exerted on bearings due to coupling misalignment, rotor unbalance, belt misalignment, and belt tension.
- Establish quantitative tensions for drive belt studies.
- Learn to relate the vibration signature to forces associated with common malfunctions such as resonance and bearing faults. Learn phase relationship between force and vibration spectrum.
- Learn nature of rotor dynamic forces due to common defects.
- Witness 180 degree phase shift between heavy and high spots when rotor goes through a critical speed. Demonstrate how mass unbalance force quadruples when the speed is doubled, but vibration amplitude does not follow the same trend.
- Verify and refine your rotor dynamic models and enhance modeling skills.
- The kit consists of one transducer simultaneously measuring vertical and horizontal force and one matching signal conditioner.

Axial Bearing Force Transducer (M-FTA)
- Measure the axial load on the main shaft under dynamic excitation.
- Investigate the effect of misaligned shaft and belts on the shaft axial load.
- Study the effects of cocked rotors and eccentric sheaves on the shaft axial load.
- The kit consists of one transducer measuring axial force on main shaft and one matching signal conditioner.

Specifications

Electrical
Machinery Fault Simulator - Magnum (MFS-MG)

<table>
<thead>
<tr>
<th>Motor</th>
<th>3 Phase, 1 HP motor, pre-wired self-aligning mounting system for easy installation/removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive</td>
<td>1 HP variable frequency AC drive with multi-featured front panel programmable controller</td>
</tr>
<tr>
<td>RPM range</td>
<td>0 to 6000 rpm (short duration) variable speed</td>
</tr>
<tr>
<td>Current Measurement</td>
<td>Power leads accessible for current measurements</td>
</tr>
<tr>
<td>Tachometer</td>
<td>Built-in tachometer with LCD display and one pulse per revolution analog TTL output for DAQ purposes</td>
</tr>
<tr>
<td>Voltage</td>
<td>115/230 VAC, Single phase, 60/50 Hz</td>
</tr>
</tbody>
</table>

Mechanical

<table>
<thead>
<tr>
<th>Shaft Diameter</th>
<th>3/4” diameter; Turned, Ground, & Polished (TGP) steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor Base</td>
<td>30” long, completely movable using jack bolts for easy horizontal misalignment and standard shims for vertical misalignment. Pinned for easy realignment. Bearing mounts can be mounted in nine different positions for variable rotor span.</td>
</tr>
<tr>
<td>Rolling Bearing</td>
<td>Two sealed rolling element in aluminum horizontally split bracket housing for easy changes, tapped for transducer mount</td>
</tr>
<tr>
<td>Sleeve Bearing</td>
<td>Two full sleeve bearings with multiple oil inlet ports, provisions to mount proximity probes at any angle.</td>
</tr>
<tr>
<td>Oil Distribution System</td>
<td>Pump, pressure gage, stainless steel oil tank, back flow safety switch, pressure interlock gauge.</td>
</tr>
<tr>
<td>Rotors</td>
<td>Two 6” aluminum with 36 threaded holes at 10 degree intervals for introducing unbalance</td>
</tr>
<tr>
<td>Belt Mechanism</td>
<td>Two double groove “V” belt with one set screw mounting and one bush/key mounting. Positive displacement lever with turnbuckle plus adjustable gearbox platform</td>
</tr>
<tr>
<td>Gearbox and Brake</td>
<td>Accessible three-way straight cut bevel gearbox with 1.5:1 ratio (20 gear input). Manually adjustable magnetic brake 0.5 - 10 lb.-in</td>
</tr>
<tr>
<td>Reciprocating Mechanism</td>
<td>Adjustable spring engagement timing and two stroke settings.</td>
</tr>
<tr>
<td>Centrifugal Pump</td>
<td>½ HP, 27psi at 0gpm, 25gpm at 0 psi with water at 4000rpm</td>
</tr>
<tr>
<td>Reciprocating Compressor</td>
<td>½ HP, 2.6cfm, 120psi belt driven with 5-gallon air tank</td>
</tr>
<tr>
<td>Instrumentation Connectors</td>
<td>16 BNC connector plate under the rotor base linked to BNC connector panel mounted on the edge for the base plate for direct connection to data collectors</td>
</tr>
<tr>
<td>Safety Cover</td>
<td>Lockable clear, impact resistant hinged plastic cover with motor interlock switch to shut down motor when cover is raised</td>
</tr>
<tr>
<td>Foundation</td>
<td>1/2” die cast aluminum base, base stiffener and eight rubber isolators</td>
</tr>
</tbody>
</table>

Physical

<table>
<thead>
<tr>
<th>Weight</th>
<th>Approximately 150 lb (68kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>L=50” (127cm), W=24” (61cm), H=22” (56cm)</td>
</tr>
</tbody>
</table>

Content of brochure is subject to change without any notice